4 SEM TDC MTMH (CBCS) C 10

2023

(May/June)

MATHEMATICS

(Core)

Paper: C-10

(Ring Theory and Linear Algebra—I)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Define unit element in a ring. Give an example. 1+1=2
 - (b) Let R be a ring and $a, b \in R$. Show that a(-b) = (-a)b.
 - (c) Show that intersection of two subrings of a ring R is a subring of R. 3

P23/978

(Turn Over)

(d) Show that the ring \mathbb{Z}_p of integers modulo p (p being a prime) is a field. 3	(b)
(e) Let R be a commutative ring with unity	
and let A be an ideal of R. Show that $\frac{R}{A}$ is a field if and only if A is maximal. 5	(c)
Or	
Define a principal ideal domain. Show that the ring \mathbb{Z} of integers is a principal ideal domain. 1+4=5	(d)
(f) Define characteristic of a ring. Let R be a ring with unity. Then show that	
characteristic of R=	(e)
$\int n$, if 1 has order n under addition	
0, if 1 is of infinite order under addition	a Allena
1+2+2=5	
Or	
Prove that the ring	
$Q[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}, d \text{ is a positive integer}\}$	
is a field.	(f)
(a) Give an example of ring homomorphism.	

(b)	Is the map $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ such that $f(x) = 2x$ a ring homomorphism? Justify.	2
(c)	Let $f: R \to S$ be a homomorphism from ring R to ring S. If ker $f = \{0\}$, then show that f is one-one.	2
ال-1	Let f. B. Charaina hamananhian	
(a)	Let $f: R \to S$ be a ring homomorphism from ring R to ring S. Show that kernel of f is an ideal of R.	2
(e)	Determine all ring homomorphisms from \mathbb{Z} to \mathbb{Z} , \mathbb{Z} being the ring of	
	integers.	3
	Show that if R is a ring with unity and	
	char $(R) = n > 0$, then R contains a	
	subring isomorphic to \mathbb{Z}_n .	
(f)	Show that if $f: R \to S$ is an onto homomorphism, then	
	$S \equiv \frac{R}{\ker f}$	5

(Turn Over)

Or

State the second theorem of ring isomorphism. Show that

$$\frac{\mathbb{Z}}{\langle 2 \rangle} \cong \frac{5\mathbb{Z}}{10\mathbb{Z}}$$
 1+4=5

1

- 3. (a) Define a vector subspace.
 - (b) Is $Q(\mathbb{R})$ a vector space?
 - (c) Is the set $\{(1, 2, 5), (2, -1, 0), (7, -1, 5)\}$ linearly independent over \mathbb{R} ? Justify.
 - (d) Let $S = \{e_1 e_2, e_1 + e_2\} \in \mathbb{R}^2$, where $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Find L(S).
 - (e) Show that any basis of a vector space is a linearly independent set. 2
 - (f) Show the sum of two subspaces of a vector space V is a subspace of V. 3
 - (g) Let V be a vector space and W_1 and W_2 be two subspaces of V. Show that

$$\dim(W_1 + W_2) = \dim W_1$$

$$+ \dim W_2 - \dim(W_1 \cap W_2)$$

P23/978 (Continued)

Or

Let V be a finite dimensional vector space and W be a subspace of V. Show that $\dim V / W = \dim V - \dim W$.

4. (a) Define a linear map. Show that the map $T: \mathbb{R}^3 \to \mathbb{R}$ such that

$$T(x, y, z) = x^2 + y^2 + z^2$$

is not linear.

1+2=3

- (b) Show that if $T: V \to W$ is a linear map from vector space V to vector space W, then—
 - (i) T(0) = 0
 - (ii) T(V) is a subspace of W 2+2=4
- (c) Extend the vector (1, 1, 1) in \mathbb{R}^3 (\mathbb{R}) to form a basis of \mathbb{R}^3 .
- (d) Answer any four of the following: 5×4=20
 - (i) Let V and W be two vector spaces and $T: V \rightarrow W$ be a linear map. Then show that

 $\dim V = \operatorname{rank} T + \operatorname{nullity} T$

P23/978

(Turn Over)

(ii) Let $\{v_1, \dots, v_n\}$ be a basis of the vector space V and w_1, w_2, \dots, w_n be vectors in the vector space W. Show that there exists a unique linear map $T: V \to W$ such that

$$T(v_i) = w_i, i = 1, 2, \dots, n$$

(iii) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T(x, y) = (x, x + y, y)$$

Then find the range of T.

(iv) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by

$$T(x, y, z) = (3x, x-y, 2x+y+z)$$

Show that T is invertible. Also find the inverse map T^{-1} .

(v) Let the linear map $T: \mathbb{R}^2 \to \mathbb{R}^4$ be defined by

$$T(x, y) = (x, y, x + y, x - y)$$

Find the matrix of T with respect to the standard bases.

P23/978

(Continued)

(vi) Let $T: V \to W$ be an invertible linear map from vector space V to vector space W where

 $\dim V = \dim W = n$

Show that T is non-singular if and only if T is onto.

* * *

P23-2700/978 4 SEM TDC MTMH (CBCS) C 10