4 SEM TDC PHYH (CBCS) C 9

2023

(May/June)

PHYSICS

(Core)

Paper: C-9

(Elements of Modern Physics)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: $1 \times 5 = 5$
 - Which of the following expressions (a) represents thermal de **Broglie** wavelength of a particle?

(i)
$$\lambda = \frac{h}{\sqrt{3mkT}}$$
 (ii) $\lambda = \frac{h}{\sqrt{3kT}}$

(ii)
$$\lambda = \frac{h}{\sqrt{3kT}}$$

(iii)
$$\lambda = \frac{2h}{\sqrt{3mkT}}$$
 (iv) $\lambda = \frac{h}{\sqrt{kT}}$

(iv)
$$\lambda = \frac{h}{\sqrt{kT}}$$

P23/980

(Turn Over)

(h)	The	nuclear	density
IUI	1116	Hucicai	deligity

- (i) is independent of size of nucleus
- (ii) increases with increasing size of nucleus
- (iii) decreases with increasing size of nucleus
- (iv) None of the above
- (c) The existence of zero-point energy is in conformity with
 - (i) Compton effect
 - (ii) uncertainty principle
 - (iii) de Broglie hypothesis
 - (iv) None of the above
- (d) A metastable state has lifetime of the order of
 - (i) 10⁻⁶ s
 - (ii) 10^{-5} s
 - (iii) 10⁻⁴ s
 - (iv) 10^{-3} s
- (e) Which of the following cannot be emitted by a radioactive substance during their decay?
 - (i) Neutrino
 - (ii) Protons
 - (iii) Helium nuclei
 - (iv) Electrons

P23/980

(Continued)

2. Answer the following questions:

 $2 \times 5 = 10$

- (a) What is photoelectric effect? Define work function of a material.
- (b) What are three-level and four-level lasers? Give examples of each type.
- (c) Write down the semi-empirical mass formula for a nucleus. Define binding energy.
- (d) Show that the phase velocity is half of the group velocity for a non-relativistic free particle.
- (e) Describe how an electron-positron pair is created by gamma photons in the vicinity of a nucleus.
- **3.** (a) Explain the validity of Heisenberg's uncertainty principle using the gamma ray microscope thought experiment.

3

3

(b) Normalize the following wave function in one dimension:

$$\psi(x) = Ae^{-\alpha x} \text{ for } x > 0$$
$$= Ae^{\alpha x} \text{ for } x < 0$$

where α is a positive constant.

(c) Briefly explain the two cyclic processes involved in the thermonuclear fusion in driving stellar energy.

3

P23/980

(Turn Over)

4.	(a)	What is a wave function? How can the stationary states of a particle be
		explained using the concept of wave
		function? 1+3=4

(b) Obtain the energy eigenvalues and eigenfunctions for a particle in a one-dimensional rigid box.

r

Derive the time-dependent Schrödinger equation for a non-relativistic particle.

5. (a) Derive an expression for Planck's law of radiation.

(b) Explain the quantum mechanical tunnelling for a particle across a step potential and obtain the expression for transmission coefficient.

(c) Obtain an expression for the law of radioactive decay. Show that the half-life of a radioactive substance is inversely proportional to its decay constant.

3+3=6

6. Write a short note on (any one):

- (a) Davisson and Germer experiment
- (b) Liquid-drop model

* * *

P23-5200/980

4 SEM TDC PHYH (CBCS) C 9

4

6